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Invariant densities of delayed maps in the limit of large time delay

E. Ferretti Manffra,1,* W. Just,2,† and H. Kantz1
1Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, 01187 Dresden, Germany

2Institut für Physik, TU-Chemnitz, D-09107 Chemnitz, Germany
~Received 14 June 2001; revised manuscript received 4 September 2001; published 18 December 2001!

The marginal invariant density of chaotic attractors of scalar systems with time delayed feedback has an
asymptotic form in the limit of large delay. It is well known that the dimension and the entropy of such
attractors obey interesting scaling laws in this limit, but very little has been said about properties of the
invariant density. We present general considerations, detailed analytical results in low order perturbation theory
for a particular model, and numerics for understanding the asymptotic behavior of the projections of the
invariant density. Our approach clarifies how the analytical properties of the model determine the behavior of
the marginal invariant densities for large delay times.
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I. INTRODUCTION

Dynamical systems with a retarded feedback appea
many different situations in nature and technology li
physiology@1,2#, biology @3#, laser physics@4#, and economy
@5#. Such systems are usually modeled by delayed differ
tial equations~DDE’s! of the form

ẋ5F„x~ t !,x~ t2t!…. ~1!

Apart from its relevance to applied sciences, the system~1!
also has interesting theoretical features: The phase spa
Eq. ~1! is infinite dimensional and high dimensional chao
attractors may appear@6#. This is indeed a nice example of
simple system that can show high dimensional chaotic att
tors.

The dynamical behavior of a given model of type~1!
depends, for small values oft, typically in a very compli-
cated way ont. However, there is ample evidence that ma
models enter, for sufficiently larget, in a regime where thet
dependence becomes very simple. In particular, the Kap
Yorke dimension of these chaotic attractors scales line
with the delay value, and the information entropy estima
with the Pesin identity achieves a finite asymptotic value
large t @7,8#. In fact, these scaling properties are a con
quence of the asymptotic behavior of the Lyapunov spect
in the limit t→`. Being ergodic averages, Lyapunov exp
nents reflect two important aspects of the dynamics: the
ear ~instability! and the statistical properties. The latter d
pend directly on the invariant density of a system. In orde
gain some insight in this ‘‘universal’’ regime of high dimen
sional chaos of delayed systems, the understanding of
properties of invariant densities of delayed systems in
limit of large delay is an essential and nontrivial starti
point.

Another well known source of high dimensional chaos
spatially extended systems. There are different mechan
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leading to high dimensional chaos in spatially extended s
tems and in systems with time delayed feedback, but
several scenarios it was possible to establish a formal r
tion between both as in@9,10# or in @11#. In these cases, th
limit t→` was identified with the thermodynamic limit o
extended systems, which again emphasizes our interest i
large delay limit. The marginal invariant densityr(x) of a
time delayed system then corresponds to the single-vari
density of a spatially extended system, where the existe
of a well defined limit of the latter in the thermodynam
limit is well known @12# .

So, in this work we focus on time delayed feedback s
tems with chaotic attractors, in a regime of the feedback ti
t where the above-mentioned asymptotics of the Kapl
Yorke dimension and of the information entropy can be o
served. By ergodicity, a single solutionx(t) then creates the
natural invariant density calledrt(x), if transients are dis-
carded. This marginal density is one particular projection
the full phase space density. The main issue of this pape
to study under which conditions and how this densityrt(x)
converges to an asymptotic formr`(x) in the limit of larget
~see Fig. 1 for an example where an asymptotic form ex
in a range of delay values!, and what are the underlying
mechanisms for this convergence.

One could argue that this behavior is not surprising:
the dimensions of the attractors grow and more degree
freedom become relevant one could expect that the pro
tion of the measures onto any space with a much sma
dimension than the attractor itself will be smooth and n
depend on the delay. This would be a consequence of
central limit theorem. But this is far from being the corre
explanation: The degrees of freedom are correlated and
one-dimensional distribution is typically not Gaussian~as the
argument would predict! but strongly dependent on the sy
tem. The idea of using the central limit theorem was, ho
ever, explored in@13#. The authors are able to identify th
shortest time scale of correlations and construct a versio
the central limit theorem to derive the invariant density
uncorrelated points. But this situation is not general and
can even find systems with low-dimensional attractorsd
'3) where invariance of the density with respect to the
lay value is observed.
n
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As a side remark, we want to mention that not all syste
of type~1! show the above-mentioned scenario. In particu
two different types of behaviors have been found as be
typical as well, namely multistability@14# and asymptotic
periodicity @11,15#. In both situations the convergence pro
erties of the Frobenius-Perron operator induced by the
namics will depend strongly on the initial density and the
fore the system is not ergodic@16#, so that~quasi-!periodic
solutions of the Frobenius-Perron equation exist. In th
cases there exist also fixed point solutions correspondin
the natural invariant density on a single ergodic compon
whose dependence ont could be studied with the concep
of this paper, but it would involve additional complication
when we have to relate a particular invariant set for ont
value to a particular one for anothert value. Hence, we
restrict our investigation to systems with a globally attract
chaotic invariant set.

The concrete treatment of problems related to the inv
ant density of Eq.~1! will at some point require discretiza
tion of time as done in@11,13#. Therefore, one will be treat
ing the Frobenius-Perron operator of a map that in so

FIG. 1. Some properties of the Mackey-Glass equationẋ5
2bx(t)1ax(t2t)/@(11x(t2t)10)# with a50.2 andb50.1. Up-
per panel: dimension, entropy as a function of the delayt. Lower
panel: probability densities constructed from the time series
x(nDt) with Dt50.001*t ~integration step!.
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limit will describe very well the behavior of the continuou
time system. Since we are interested in fundamental iss
and not in the behavior of a special system, we decided
treat directly scalar delayed maps of the form

xn115 f ~xn ,xn2t!, ~2!

for which we have observed that the probability densityr(x)
of xn induced by a stationary invariant density in the fin
t11-dimensional phase space will have an asymptotic fo
for large delay. Therefore, in this sense delayed maps
DDE’s show similar behaviors.

The limit t→` for maps like Eq.~2! can be turned into a
continuum limit which is equivalent to the discretization
DDE’s. A good approximation of a discretized DDE for th
true DDE’s solutions is only obtained in this limit@11#.
Therefore, one could say that some delayed maps in the l
of large delay approximate the solutions of delayed differ
tial equations, so that one expects in fact that in this lim
their invariant density should assume an asymptotic fo
invariant with respect to the delay.

In Sec. II we describe the open problems related to
invariant densities of delayed maps and illustrate them w
numerical results obtained for a special map. In Sec. III
analyze a simple case analytically. Our approach consist
investigating a very simple delayed map: a shift on a to
with a weak time delayed periodic perturbation. All the ca
culations are performed in the Fourier space and the Fou
coefficients are calculated up to first order. Using this a
proach we are able to obtain explicitly the asymptotic fo
of the projections of the invariant density in the limit of larg
delays and analyze its convergence as the delay increa
Finally, in Sec. IV we present a discussion of the results.

II. NUMERICAL OBSERVATIONS AND STATEMENT
OF THE PROBLEM

In many different delayed systems we have observed
asymptotic behavior of the projections of the invariant me
sure at large delays. As an example consider the map

xn115~12e! f ~xn!1e f ~xn2t!, ~3!

where f (x)52x2sgn(x), xP@21,1#. In Fig. 2 we present
the numerical results on how the density of the variablex
converges to an asymptotic form as the delay increases.
densities were obtained by dividing the interval@21,1# in
cells I x of equal size centered at a pointx. The densitym(x)
is computed from a normalized histogram~relative visiting
frequency of cellI x). We have defined a quantity to chara
terize the difference between these invariant densities at
and large delay:( I x

umt(x)2m`(x)u. Its dependency with the
delay value is depicted in Fig. 3. This quantity converges
zero~at least within the numerical error! ast→`. The con-
vergence behavior depends on details of the system~here the
parametere). In the special case ofe50.5, the measure ha
the form m(x)}2x2sgn(x) and independent oft. As the
densities are non-Gaussian, we do not expect that the sim

f
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INVARIANT DENSITIES OF DELAYED MAPS IN THE . . . PHYSICAL REVIEW E 65 016211
central limit theorem will supply justification for the conve
gence. In fact, as it will be seen later, the variables are
completely uncorrelated.

In order to observe if there is some decoupling of t
degrees of freedom we define a quantity

D~ j !5^um~xn ,xn2 j !2m~xn!m~xn2 j !u&, ~4!

where the two-dimensional densitym(xn ,xn2 j ) is estimated
by dividing the plane in square cells centered at$xn ,xn2 j%
and constructing the corresponding histogram from a t
series. The average in Eq.~4! is computed over the cells
This quantity has similar meaning as the mutual informati
It describes the distance between two densities. The ne
the quantity is to zero, the more uncorrelated arexn and

FIG. 2. The invariant density of Eq.~3! for a definitet and e
50.3. m(x) is estimated by a normalized histogram. The inter
@21,1# is divided into 200 cells and we have used a time series
106 points.

FIG. 3. Difference between the measuresmt and m200 ~repre-
sentingm`) as a function oft. The measure is estimated in th
same way as in Fig. 2. The sum is performed over the cells
described in the text.
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xn2 j . This is a stronger test for uncorrelation than the line
correlation would provide. In Fig. 4 the dependency ofD on
j is depicted for different values ofe. Due to statistical errors
existent on the measure at every box, the valueD50 is
never achieved. We could instead identify a finite minimu
value for D at every simulation~the plateau in Fig. 4!. We
consider that the variables are uncorrelated whenD assumes
this minimum value. By comparing the Figs. 3 and 4 o
might wonder if the convergence of the one-dimensional p
jection of the measure is a consequence of the loss of co
lations at short time scales.

In order to investigate formally the invariant measure
we have to construct the Frobenius-Perron equation and
to understand the observed numerical facts from them. Th
are two different approaches to construct these equation

One way is to consider thet-time distributions

r (1)~x!5^d~x2xn!&,

r (2)~x,y!5^d~x2xn!d~y2xn2t!&, ~5!

r (3)~x,y,z!5^d~x2xn!d~y2xn2t!d~z2xn22t!&, . . . ,

where^•••& denotes the average overxn with respect to the
natural invariant density~i.e., a long time average!, then in-
variance yields the system of equations

r (1)~x!5E dx8E dy8d„x2~12«! f ~x8!

2« f ~y8!…r (2)~x8,y8!,

r (2)~x,y!5E dx8E dy8E dz8d„x2~12«! f ~x8!2« f ~y8!…

3d„y2~12«! f ~y8!2« f ~z8!…r (3)~x8,y8,z8!,

A ~6!

l
f

s

FIG. 4. D(xn ,xn2 j ) for the map ~3! with delay t510. The
measures are estimated from the relative frequencies at cells
plane and the average is performed over the cells. A time serie
107 point is used.
1-3
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which corresponds to an open hierarchy of equations
cannot be solved unless some simple ansatz is assume
instance assuming thatr (2)(x,y)5r (1)(x)r (1)(y). An inter-
esting feature of the system~6! is that it does not depen
explicitly on the delay value, while one expects that the
variant density does. The dependency comes implicitly in
fact that correlations, e.g., betweenx andy, would depend on
the delay value.

Another way to look at the problem is to consider t
delayed map~3! acting on a vector space of dimensiont
11. Defining the components of the vector by the notat
x( j )5xn2 j , the Frobenius-Perron equation in terms of the
coordinates reads

r~x(0), . . . ,x(t)!5E dzd„x(0)2~12«! f ~x(1)!

2« f ~z!…r~x(1), . . . ,x(t),z!. ~7!

Its solution determines the two time density

r (2)~x,y!5E dx(1)
•••E dx(t21)r~x,x(1), . . . ,x(t21),y!.

~8!

Hence, one quantity in the system~6! is fixed, and by con-
dition ~8! the delay time enters explicitly. Therefore, a
analysis which is based solely on Eqs.~6! does not seem to
be consistent.

Considering Eqs.~6!, we see thatr (1) is fully determined
if r (2) is known. If r (2) has a definite asymptotic form in th
limit t→` so doesr (1), according to Eq.~6!. Determining
r (2) seems to be only possible by solving the Frobeni
Perron equation~7!, which is a difficult task particularly a
the limit of larget. In order to investigate this problem fu
ther we have chosen a special case of a delayed sy
where the invariant measure can be investigated analytic

III. SHIFTS ON A TORUS WITH A DELAYED
PERTURBATION

In order to perform some analytical investigations w
have chosen a map on a torus, i.e., we consider its variabw
as an angle. Such maps are known to have nice prope
from the analytical point of view, e.g., they are hyperbolic
local expansion rates are positive and allow for perturba
expansions~cf., e.g.,@17# for an application in the context o
coupled map lattices!. Since we will base part of our analys
on such expansions we consider the following map defi
on the circle:

wn1152wn1«g~wn!1«g~wn2t!, ~9!

where the variablew is considered modulo 2p and « will
later on be a small parameter giving rise to a perturba
theory. We may also express this map in a vector space
sidering,f as vector with componentsf (0),f (1), . . . ,f (t)

wherefn
( i )5wn2 i ,
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fn11
(0) 52fn

(0)1«g~fn
(0)!1«g~fn

(t)!5 f ~f (0),f (t)!,
~10!

fn11
( i ) 5fn

( i 21) , 1< i<t

i.e.,fn115F(fn). We can write the Frobenius-Perron equ
tion for this system in thist11-dimensional space as

rn11~f!5E df8d„f2F~f8h!…rn~f8!. ~11!

Switching now to the Fourier decomposition

rn~f!5(
k

cn~k!eik•f,

~12!

cn~k!5
1

~2p!tE df e2 ik•frn~f!,

Eq. ~11! reads

cn11~k!5(
k8

Lk,k8cn~k8!, ~13!

where

Lk,k85G~k8(0)22k(0)2k(1),k(0)!G~k8(t),k(0)!

3)
j 51

t21

dk8( j ),k( j 11) ~14!

and the abbreviation

G~k8,k!5
1

2pE df eik8f2 ik«g(f) ~15!

has been introduced taking the delay into account. Expan
in terms of« yields

G~k8,k!5dk8,02 ik«Gk81O~«2!, ~16!

whereGk8 are the Fourier coefficients ofg.
Evaluating Eq.~13! for «50 we have

cn11~k(0),k(1),k(3), . . . ,k(t21),k(t)!

5cn~2k(0)1k(1),k(2),k(3), . . . ,k(t),0! ~17!

and thus

cn1t~k(0),k(1),k(3), . . . ,k(t21),k(t)!

5cn„Nt~k!,0, . . .,0,0,0…, ~18!

where the notation

Nn~k!52nk(0)12n21k(1)1•••1k(n) ~19!

for the argument of the Fourier coefficients has been use
we consider an analytic density at timen50 then its Fourier
coefficients decay exponentially. Thus, iterating the syst
1-4
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INVARIANT DENSITIES OF DELAYED MAPS IN THE . . . PHYSICAL REVIEW E 65 016211
~17! we recognize that all coefficients but a few becom
exponentially small and we end up with the stationary so
tion

c
*
(0)~k!5dN(k),0 . ~20!

The form of the invariant density in the whole phase spac
the following:

r~f!u«505(
k

dN(k),0e
ik•f ~21!

and it consists of one-dimensional strips with uniform de
sity. The projection of this invariant density on one dime
sion is uniform. The picture of the strips can be seen easil
two dimensions. For instance, considering the projections
the planes (f (0),f ( j )) one has

r (0)~f (0),f ( j )!u«505d~f (0)222 jf ( j )! ~22!

and for largej the strips practically fill the plane. These r
sults of course follow from analyzing the map without t
delayed term.

We use the series expansion

cn~k!5cn
(0)~k!1«cn

(1)~k!1O~«2! ~23!

to determine the stationary solution for nonvanishing«.
Combining Eqs.~13!, ~16!, and~23! we obtain

cn11
(1) ~k!5cn

(1)~2k(0)1k(1),k(2), . . . ,k(t),0!

2 ik (0)(
k8

@dk8(t),0dN(k8),0Gk8(0)2k(1)22k(0)

1Gk8(t)dN(k8),0dk8(0),2k(0)1k(1)#)
j 51

t21

dk8( j ),k( j 11).

~24!

Using similar arguments as before, we obtain a station
solution for the first order coefficients that reads

c
*
(1)~k!52 i (

n50

`

2nNt~k!

3(
k8

@dk8(t),0dNt(k8),0Gk8(0)22k(0)2k(1)

1Gk8(t)dNt(k8),0dk8(0),2k(0)1k(1)#)
j 51

t21

dk8( j ),0

2 i (
n50

t21

Nn~k!(
k8

@dk8(t),0dN(k8),0Gk8(0)22k(0)2k(1)

1Gk8(t)dN(k8),0dk8(0),2k(0)1k(1)#

3 )
j 51

t2n21

dk8( j ),kj 1n11 )
j 5t2n

t21

dk8( j ),0 . ~25!

Now, we have an approximation for the invariant density
to first order. We are interested in the behavior of the lo
dimensional projections of this invariant density and th
01621
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p
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dependence on the delay timet. Let us first consider the one
variable distribution: its expression is obtained consider
k(1)5k(2)5•••5k(t)50 in Eq.~12!. We therefore make this
substitution in Eq.~25! to obtain the form of the correspond
ing Fourier coefficients:

c~k(0)!5dk(0),01«c(1)~k(0)!1O~«2!, ~26!

with the contribution of first order being given by

c(1)~k(0)!52 ik (0)(
n50

`

2nG22n11k(0)

2 ik (0)(
n50

`

2nG22t1n11k(0). ~27!

For «50 the measure coincides with a uniform measu
which is expected looking at Eq.~9!. The delay-dependen
part is contained in the higher order terms. From the fi
order approximation we can see that ifg is a smooth func-
tion, this contribution will aquire an asymptotic form in th
limit t→`.

The same procedure can be applied to obtain tw
dimensional projections. Considering for instancek( i )50,
for any iÞ0 andiÞ j we may obtain the coefficients

c~k(0),k( j )!5d2tk(0)12t2 j k( j ),01«c(1)~k(0),k( j )!1O~«2!,
~28!

where

c(1)~k(0),k( j )!52 i ~2 j k(0)1k( j )! (
n50

`

2n@G2n11(2 j k(0)1k( j ))

1G2t1n11(2 j k(0)1k( j ))#2 i2( j 21)

3@G(2 j k(0)1k( j ))1G2t(2 j k(0)1k( j ))#

2 ik (0)(
n50

j 22

2n@G2n11(k(0)122 j k( j ))dk( j ),2j 2n21m

1G22t1n11(k(0)122 j k( j ))#. ~29!

One should also expect that the two-dimensional projecti
converge towards an asymptotic form in the limit of lar
delay.

For ease of presentation and in order to clarify our ide
let us first consider a particular choice for the functiong in
Eq. ~9!, namely,

g~w!5w~p2w! for wP@0,p#, g~w!5g~w1p!.
~30!

The Fourier coefficients of this function are

G2k5
22

~2k!2
, G2k1150 ; k. ~31!

With Eq. ~31! in Eqs.~27! and ~26!, we have the first order
approximation for the coefficients

c(1)~k(0)!5
i

k(0) S 11
1

22tD ~32!
1-5



ea

to
th
v
u

f
s of
-
tion

es
rder

uni-
te
is-
n if
t our

ro-

se
rde
t t

a
b

te

s fig-
oxi-
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and for the one-dimensional projection of the invariant m
sure

r~f (0)!5122«S 11
1

22tD (
k(0)51

`
sin~k(0)f (0)!

k(0)
1O~«2!.

~33!

It is easy to see that this projection converges smoothly
wards an asymptotic form. We can check numerically
range of validity of our approximation observing the beha
ior of the averages with respect to the invariant meas

FIG. 5. Upper panel̂ f (0)& as function of« for t52; open
circles correspond to the first order approximation and the clo
circles to numerics. Lower panel: the difference between first o
and numerics; the dashed line is a fit to a parabola, showing tha
error is of second order in«.

FIG. 6. Similar to Fig. 5, with averages of^sin(mf(0))&, which
are related to the values of the coefficientsc(m). In the upper panel
the closed symbols correspond to the first order approximation
the open ones to numerics. In the lower panel the difference
tween the first order approximation and the numerics is depic
The fit to a parabola shows that the error is of second order.
01621
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^f (0)&,^cos(f(0))&,^sin(f(0))&. In order to give the average o
the angle a definite meaning we have restricted the value
the angle to the interval@0,2p). In Figs. 5 and 6 some nu
merical results are compared to the first order approxima
as a function of the couplinge. All the numerical results
clearly confirm that our approximation correctly describ
the lowest order effects, and that the neglected higher o
corrections lead to less than 10% effects fore,0.01. In or-
der to demonstrate that our results are to some extent
form in the delay time we investigate the error for fini
couplinge in dependence on the delay time. The result d
played in Fig. 7 shows that the difference stays finite eve
the delay becomes large. Such finding demonstrates tha
expansion can be used even for large delay times.

Also the specific expressions for the two-dimensional p
jections may be obtained,

r~f (0),f ( j )!5d~f (0)222 jf ( j )!

1e (
k(0),k( j )

c(1)~k(0),k( j )!e(k(0)f(0)1k( j )f( j ))

~34!

with j,

c(1)~k(0),k( j )!5
i

2~k(0)122 j k( j )!
S 11

1

22tD
1

2 j ik (0)

~2 j k(0)1k( j )!2 S dk( j ),2m1
1

22tD
1

2ik (0)

4~k(0)122 j k( j )!2

3 (
n50

j 22

22nS dk( j ),2j 2nn1
1

22tD , ~35!

d
r

he

nd
e-
d.

FIG. 7. Upper panel:̂f (0)& as a function oft for «50.002; the
open and closed circles have the same meaning as in previou
ures. Lower panel: the difference between the first order appr
mation and numerics is depicted.
1-6
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wherem and n are integers. We can see also that the tw
dimensional projections of the invariant density will have
asymptotic form for larget and that the convergence rate
this limit will also be proportional to 42t.

In order to check if the arguments of Sec. II apply he
we should investigate the correlation function for smalle. A
superficial inspection of Eq.~34! suggests that to leadin
nonvanishing order correlations betweenf (0) andf (t) decay
as 22t. That rate apparently differs from the convergen
rate of the one particle density which, according to Eq.~33!,
is given by 42t. Thus one has to clarify how the decay
correlations is related to the convergence properties for la
delays. For that purpose let us have a look at perturba
result~27!. If the delay term is Ho¨lder continuous of orderl
then its Fourier coefficients decay likeGk;k2 l 21 and Eq.
~27! tells us that the one particle density converges accord
to a power law 22( l 11)t. If g is analytic then Fourier coeffi
cients decay even faster, namely exponentiallyGk
;exp(2ak) and the convergence of the one particle dens
is hyperexponential exp(2a22t). Thus the mixing rate of the
map together with the analytical properties of the delay te
determine the convergence rate of the projected measur
fact the correct convergence rate is reflected by a suit
correlation function, namely the pair correlation ofg(f) it-
self, which can be easily computed taking the Fourier se
into account.

Although we have restricted our analysis to first order
« we expect that higher order contributions will have t
same qualitative behavior. In order to make this study m
complete, we have reproduced the numerical analysis
Figs. 3 and 4 in the case of map~9!. As it can be seen from
the lower panel of Fig. 8, the one-dimensional project
converges also whene is large. The convergence is smoo
and the discrepancy between the measure at low and l
delays depends one similarly as the first order approxima
tion suggests.

IV. DISCUSSION

We have analyzed the limit of large delay in a particu
time discrete system by an analytical perturbation expans
The validity of the expansion has been confirmed by num
cal simulations. Our result shows that projected measu
converge in the limit of large delay, where the rate of co
vergence is determined by the mixing rate of the chaotic m
and by analytic properties of the delay term. Chaos plays
course, an important role for the convergence since ot
wise correlations would not decay and smooth densi
would not exist in general. However, it is not the plain mi
ing rate which is responsible for the rate of the converge
y
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but a particular pair correlation which involves the analytic
properties of the delay term.

Our treatment was confined to a first order expansion.
we have good indications that our results are valid beyo
such an order and we suppose that one might even be ab
perform a formal proof of our statements along these lin
In addition, using, e.g., diagrammatic or projection tec
niques it should be possible to go beyond our simple per
bative treatment. But such advanced approaches go far
yond the scope of this present contribution. Analy
approaches so far are restricted to hyperbolic systems,
essentially to maps on the torus. Maps on intervals, e.g., e
the simple Bernoulli shift~3! lacks such a treatment unt
today. Nevertheless, numerical simulations indicate t
qualitatively such models behave similar.

We have focused here on the scalar densityr(x) of Eq.
~2! but other projections of the probability densities in spac
with smaller dimensions than the attractor itself are also
served to have an asymptotic form in the limit of large del
One of these projections, the one on the manifold spanne
$xn11 ,xn ,xn2t%, is relevant when phase space reconstr
tion methods are used to identify the dynamics from a ti
series@18,19#. From this projection one can also perfor
estimates of the metric entropy without using the minim
dimension required by the Takens theorem. Therefore,
study of other projections of the invariant density of a d
layed system is an intersting issue for future investigatio
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FIG. 8. D(xn ,xn2 j ) ~upper panel! and the average differenc
between measures at low and large delay~lower panel! for the map
~9!.
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