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Invariant densities of delayed maps in the limit of large time delay
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The marginal invariant density of chaotic attractors of scalar systems with time delayed feedback has an
asymptotic form in the limit of large delay. It is well known that the dimension and the entropy of such
attractors obey interesting scaling laws in this limit, but very little has been said about properties of the
invariant density. We present general considerations, detailed analytical results in low order perturbation theory
for a particular model, and numerics for understanding the asymptotic behavior of the projections of the
invariant density. Our approach clarifies how the analytical properties of the model determine the behavior of
the marginal invariant densities for large delay times.
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[. INTRODUCTION leading to high dimensional chaos in spatially extended sys-
tems and in systems with time delayed feedback, but for
Dynamical systems with a retarded feedback appear iseveral scenarios it was possible to establish a formal rela-
many different situations in nature and technology liketion between both as if9,10] or in [11]. In these cases, the
physiology[1,2], biology[3], laser physic$4], and economy limit 7—< was identified with the thermodynamic limit of
[5]. Such systems are usually modeled by delayed differenextended systems, which again emphasizes our interest in the

tial equationsDDE’s) of the form large delay limit. The marginal invariant densipfx) of a
_ time delayed system then corresponds to the single-variable
x=FX(t),x(t—17)). (D) density of a spatially extended system, where the existence

of a well defined limit of the latter in the thermodynamic
Apart from its relevance to applied sciences, the system limit is well known [12] .
also has interesting theoretical features: The phase space of So, in this work we focus on time delayed feedback sys-
Eqg. (1) is infinite dimensional and high dimensional chaotic tems with chaotic attractors, in a regime of the feedback time
attractors may appe@8]. This is indeed a nice example of a » where the above-mentioned asymptotics of the Kaplan-
simple system that can show high dimensional chaotic attrac¥orke dimension and of the information entropy can be ob-
tors. served. By ergodicity, a single solutiotft) then creates the
The dynamical behavior of a given model of typ®  natural invariant density calleg, (x), if transients are dis-
depends, for small values of typically in a very compli-  carded. This marginal density is one particular projection of
cated way orr. However, there is ample evidence that manythe full phase space density. The main issue of this paper is
models enter, for sufficiently largs in a regime where the  to study under which conditions and how this dengityx)
dependence becomes very simple. In particular, the Kaplareonverges to an asymptotic forpg,(x) in the limit of larger
Yorke dimension of these chaotic attractors scales linearlysee Fig. 1 for an example where an asymptotic form exists
with the delay value, and the information entropy estimatedn a range of delay valugsand what are the underlying
with the Pesin identity achieves a finite asymptotic value formechanisms for this convergence.
large 7 [7,8]. In fact, these scaling properties are a conse- One could argue that this behavior is not surprising: As
quence of the asymptotic behavior of the Lyapunov spectrunthe dimensions of the attractors grow and more degrees of
in the limit ~—oc. Being ergodic averages, Lyapunov expo-freedom become relevant one could expect that the projec-
nents reflect two important aspects of the dynamics: the lintion of the measures onto any space with a much smaller
ear (instability) and the statistical properties. The latter de-dimension than the attractor itself will be smooth and not
pend directly on the invariant density of a system. In order tadepend on the delay. This would be a consequence of the
gain some insight in this “universal” regime of high dimen- central limit theorem. But this is far from being the correct
sional chaos of delayed systems, the understanding of thexplanation: The degrees of freedom are correlated and the
properties of invariant densities of delayed systems in the@ne-dimensional distribution is typically not Gauss{as the
limit of large delay is an essential and nontrivial startingargument would predigtout strongly dependent on the sys-
point. tem. The idea of using the central limit theorem was, how-
Another well known source of high dimensional chaos areever, explored if13]. The authors are able to identify the
spatially extended systems. There are different mechanisnshortest time scale of correlations and construct a version of
the central limit theorem to derive the invariant density of
uncorrelated points. But this situation is not general and one
*Email address: elis@mpipks-dresden.mpg.de can even find systems with low-dimensional attractaifs (
"Permanent address: Queen Mary, University of London, Londor=3) where invariance of the density with respect to the de-
E14NS, UK. Email address: wolfram.just@physik.tu-chnmenitz.de lay value is observed.
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5 1af ‘ ' ‘ ] limit will describe very well the behavior of the continuous
§ 12 ¢ 1 time system. Since we are interested in fundamental issues
8 ‘g ] . and not in the behavior of a special system, we decided to
§ 6l //’//\ J/ ] treat directly scalar delayed maps of the form
d 4 f’/ ]
g o VU | O X 1=k X, @
20 40 60 80 100
for which we have observed that the probability denpity)
0.015 ‘ - ‘ of x,, induced by a stationary invariant density in the finite
7+ 1-dimensional phase space will have an asymptotic form
z S
g oot e g for large delay. Therefore, in this sense delayed maps and
g DDE's show similar behaviors.
3 0005 1 The limit 7— for maps like Eq(2) can be turned into a
continuum limit which is equivalent to the discretization of
% E‘o " 100 DDE's. A good approximation of a discretized DDE for the

De?gyr true DDE’s solutions is only obtained in this limftL1].
Therefore, one could say that some delayed maps in the limit
of large delay approximate the solutions of delayed differen-
tial equations, so that one expects in fact that in this limit
their invariant density should assume an asymptotic form
invariant with respect to the delay.

In Sec. Il we describe the open problems related to the
invariant densities of delayed maps and illustrate them with
numerical results obtained for a special map. In Sec. lll we
analyze a simple case analytically. Our approach consists of
investigating a very simple delayed map: a shift on a torus
with a weak time delayed periodic perturbation. All the cal-
culations are performed in the Fourier space and the Fourier
coefficients are calculated up to first order. Using this ap-
proach we are able to obtain explicitly the asymptotic form
% of the projections of the invariant density in the limit of large
delays and analyze its convergence as the delay increases.
Finally, in Sec. IV we present a discussion of the results.
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FIG. 1. Some properties of the Mackey-Glass equaﬁ@n
—bx(t)+ax(t— 7)/[(1+x(t— 7)!%] with a=0.2 andb=0.1. Up-
per panel: dimension, entropy as a function of the delajower
panel: probability densities constructed from the time series of Il. NUMERICAL OBSERVATIONS AND STATEMENT
x(nAt) with At=0.001*r (integration step OF THE PROBLEM

) ) In many different delayed systems we have observed an
As a side remark, we want to mention that not all systems;symptotic behavior of the projections of the invariant mea-
two different types of behaviors have been found as being

typical as well, namely multistability14] and asymptotic
periodicity[11,15. In both situations the convergence prop-
erties of the Frobenius-Perron operator induced by the dy- .
namics will depend strongly on the initial density and there-Wheref(x) =2x—sgn), xe[—1,1]. In Fig. 2 we present
fore the system is not ergodd6], so that(quasijperiodic the numerical results on how the density of the variable
solutions of the Frobenius-Perron equation exist. In thes€0nverges to an asymptotic form as the delay increases. The
cases there exist also fixed point solutions corresponding tdensities were obtained by dividing the interyat1,1] in
the natural invariant density on a single ergodic componentells I of equal size centered at a pointThe densityu(x)
whose dependence ancould be studied with the concepts IS computed from a normalized histogramelative visiting
of this paper, but it would involve additional complications frequency of celll,). We have defined a quantity to charac-
when we have to relate a particular invariant set for ene terize the difference between these invariant densities at low
value to a particular one for anothervalue. Hence, we and large delayZ, |u(x) — u.(X)|. Its dependency with the
restrict our investigation to systems with a globally attractingdelay value is depicted in Fig. 3. This quantity converges to
chaotic invariant set. zero(at least within the numerical erfoas r— . The con-

The concrete treatment of problems related to the invarivergence behavior depends on details of the syshare the
ant density of Eq(1) will at some point require discretiza- parametel). In the special case af=0.5, the measure has
tion of time as done if11,13. Therefore, one will be treat- the form w(x)*2x—sgn) and independent of. As the
ing the Frobenius-Perron operator of a map that in someensities are non-Gaussian, we do not expect that the simple

Xn+1= (1= €)f(Xn) + ef (X ), ()
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FIG. 2. The invariant density of Ed3) for a definiter and e FIG. 4. A(X,,X,—;) for the map(3) with delay r=10. The

=0.3. u(x) is estimated by a normalized histogram. The intervalmeasures are estimated from the relative frequencies at cells on a
[—1,1] is divided into 200 cells and we have used a time series oplane and the average is performed over the cells. A time series of
10° points. 10" point is used.

central limit theorem will supply justification for the conver- x,_;. This is a stronger test for uncorrelation than the linear
gence. In fact, as it will be seen later, the variables are notorrelation would provide. In Fig. 4 the dependency\obn

completely uncorrelated. j is depicted for different values @f Due to statistical errors
In order to observe if there is some decoupling of theexistent on the measure at every box, the valeO is
degrees of freedom we define a quantity never achieved. We could instead identify a finite minimum
value forA at every simulatior(the plateau in Fig. 4 We
A =(| w(Xn Xn=j) = m(Xp) (Xnj)]), (4)  consider that the variables are uncorrelated whexssumes

this minimum value. By comparing the Figs. 3 and 4 one
where the two-dimensional density(x, ,x,_;) is estimated might wonder if the convergence of the one-dimensional pro-
by dividing the plane in square cells centeredDat,x,—;} jection of the measure is a consequence of the loss of corre-
and constructing the corresponding histogram from a timdations at short time scales.
series. The average in E¢4) is computed over the cells. In order to investigate formally the invariant measures,
This quantity has similar meaning as the mutual informationwe have to construct the Frobenius-Perron equation and try
It describes the distance between two densities. The neart@ understand the observed numerical facts from them. There

the quantity is to zero, the more uncorrelated &feand  are two different approaches to construct these equations.
One way is to consider the-time distributions

0.15
pM(x)=(8(x—%p)),
PP (X,y) = (8(X—Xn) (Y ~Xn- ), (5)
'!\ ———e =05
e [ ooe0s ] P(X,Y,2) =( (X —=X) 8(Y = Xn— 1) AZ— X2}, - - -,
= . - ——» e=0.
= | where(- - -) denotes the average ovey with respect to the
:'; \ natural invariant densityi.e., a long time averagethen in-
3 \ variance yields the system of equations
S o5 o @ .
= \
= AN
W \l p(l)(X)If dx'f dy’ s(x—(1—¢&)f(x")
:'Q.,,_ ) ‘\\1~~, - ——a —sf(y’))p(z)(x’,y’),
% 10

p(z)(x,y)=f dX’J dy’f dz'6(x—(1—¢&)f(x")—ef(y’))
FIG. 3. Difference between the measuges and w,q, (repre-

sentingu..) as a function ofr. The measure is estimated in the X 8(y—(1—e)f(y")—ef(z)p®(x"y",z"),
same way as in Fig. 2. The sum is performed over the cells as
described in the text. : (6)
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which corresponds to an open hierarchy of equations that ¢§10+)1:2¢§10)+Sg(¢§10))+89(¢§17)):f(¢(0),¢(r)),

cannot be solved unless some simple ansatz is assumed, for (10)
instance assuming that?(x,y)=p®(x)p™)(y). An inter- o) =i 1<i=rs

esting feature of the systel®) is that it does not depend nebo T

explicitly on the delay value, while one expects that the in-i_e_' Pni1= F(d’n) We can write the Frobenius-Perron equa-

variant density does. The dependency comes implicitly in thejon for this system in this-+ 1-dimensional space as
fact that correlations, e.g., betweeandy, would depend on

the delay value.
Another way to look at the problem is to consider the P ¢)=f d¢p' 5(p—F(d' n))pn(’). (11
delayed map(3) acting on a vector space of dimensien
+ 1. Defining the components of the vector by the notationSwitching now to the Fourier decomposition
xV=x,_;, the Frobenius-Perron equation in terms of these

coordinates reads ik
prlp)=20 cok)e?,
p(x©@ . ,X(T))=J dzé(x(@—(1—¢)f(xV) 1 (12
Cn(k): Tf d¢e_lk'¢pn(¢)v
—ef(2)p(xV, ... xD2). (7 (2m)
Its solution determines the two time density Eq. (11) reads
Cni1(K)=2 Lygcn(k)), (13
p(2>(x,y):f dx(l)---jdx(T_l)p(x,x(l), XDy, n* ~ n
®  where
Hence, one quantity in the systei®) is fixed, and by con- Ly = (k" ©—2k©@— k@) kO) (k" (M k()
dition (8) the delay time enters explicitly. Therefore, an —1
analysis which is based solely on E¢§6) does not seem to -
be consistent. Xjﬂl Skr () k(i +1) (14
Considering Eqs(6), we see thap™ is fully determined
if p3) is known. If p'® has a definite asymptotic form in the and the abbreviation
limit 7—o so doesp™, according to Eq(6). Determining
2 ' i ius- 1 . _
p'“) seems to be only possible by solving the Frobenius o iK' $—ikeg(d)
Perron equatiori7), which is a difficult task particularly at F'(k".k)= 20 dge (15)

the limit of large 7. In order to investigate this problem fur-
ther we have chosen a special case of a delayed systehas been introduced taking the delay into account. Expansion
where the invariant measure can be investigated analyticallyn terms ofe yields

’ _ _ 2
lll. SHIFTS ON A TORUS WITH A DELAYED Pk k)= b0 o=1ke Gy +O(27), (16)

PERTURBATION whereG, are the Fourier coefficients of

In order to perform some analytical investigations we Evaluating Eq(13) for =0 we have
have chosen a map on a torus, i.e., we consider its variable ©) L) LE) (r-1) ()
as an angle. Such maps are known to have nice properties Cns (KKK, k K7)
from the analytical point of view, e.g., they are hyperbolic if =, (2kO+KkD K@ K® kDo) (17
local expansion rates are positive and allow for perturbation " o o
expansionscf., e.g.,[17] for an application in the context of 5nd thus
coupled map latticgsSince we will base part of our analysis

on such expansions we consider the following map defined Crs (KO KD KB k(D) k()
on the circle:
=cn(N,(k),0,...,0,0,0, (18
enr1=2¢n+eg(en) +ed(en-,), 9

where the notation

where the variablep is considered modulo 2 and & will NV(k)=2”k(0)+2V‘1k(1)+ e k) (19

later on be a small parameter giving rise to a perturbation

theory. We may also express this map in a vector space coffier the argument of the Fourier coefficients has been used. If
sidering, ¢ as vector with componentg(®,¢™®), ..., ¢(?  we consider an analytic density at time=0 then its Fourier
where¢ﬂ)=¢n_i, coefficients decay exponentially. Thus, iterating the system
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(17) we recognize that all coefficients but a few becomedependence on the delay tineLet us first consider the one
exponentially small and we end up with the stationary soluvariable distribution: its expression is obtained considering

tion kW=k®@)=...=k(7=0 in Eq.(12). We therefore make this
©)/ substitution in Eq(25) to obtain the form of the correspond-
C, " (K)= Sy 0- (200 ing Fourier coefficients:
The form of the invariant density in the whole phase space is c(k©)= 80 o+ ecM(k®)+O(?), (26)

the following:
with the contribution of first order being given by

P(B)]o-0= 2 o™ ? (29) -
cM(k©)=— ik(O)ZO 2VG_ vt 140)
and it consists of one-dimensional strips with uniform den- "

sity. The projection of this invariant density on one dimen- *

sion is uniform. The picture of the strips can be seen easily in - ik(o)E 2VG _prtv+1(0). (27

two dimensions. For instance, considering the projections on v=0

the planes ¢(%,¢!) one has For e=0 the measure coincides with a uniform measure

©)( 5O H| — ©)_ =i 4 29 Which is exp(_acted_ Iooking_at Ed9). The delay—dependen_t
PP M) om0= (8 ¢ @2 part is contained in the higher order terms. From the first
and for largej the strips practically fill the plane. These re- order approximation we can see thaiifs a smooth func-
sults of course follow from analyzing the map without the tion, this contribution will aquire an asymptotic form in the

delayed term. limit 7— o0,
We use the series expansion The same procedure can be applied to obtain two-
) (1) 5 dimensional projections. Considering for instarkd@=0,
cn(k)=cy (k) +ecy (k) +0O(e%) (23 for anyi=0 andi#] we may obtain the coefficients
to determine the stationary solution for nonvanishiag (k@ kW)= 85n0)4 o i o+ £H(k@ k1)) +O(?),
Combining Eqgs(13), (16), and(23) we obtain ' (28)
et (k) =cP(2k@+KkD k@), . k(,0) where
—ik(o)kE [ Sk (9,00N(k),0CK! - K()— 2k(0) (KO, kD)= —i (21K +KD) > 2"[G v 1211 0y
’ v=0
7—1

+ Gort v+ 1(2iKk(0) £ k(i) ]—i2(j71)
+ G (0 On(k'), 00k (0), 20+ k(1] Hl Okr (i) k(i +1)- ( )
=

X[G2ik(0)+ ki) + Gor(2ik0)+ k(i) ]

(24) j-2
Using similar arguments as before, we obtain a stationary —ik(O)ZO 2"[Gov+1(k(0)+ 2-ik(i)) Sk(i) 21~ v~ 1m
solution for the first order coefficients that reads .
" +G,21+v+1(k(0)+27jk(j))]- (29)
1 — v
(k)= _'VZO 2"N.(k) One should also expect that the two-dimensional projections
converge towards an asymptotic form in the limit of large
delay.
XZ [ Sk (9,00N () 0Ck! (©)— 2k k() For ease of presentation and in order to clarify our ideas
k let us first consider a particular choice for the functgpim
ﬁl Eq. (9), namely,
+Gk’(7)5N K’ ,05k’(0),2k(0)+k(1)] 5k’(j),0
A =1 d(e)=g¢(m—g) for pe[0m], g(¢)=g(p+m).
7—1 (30)
=i 2 NL(K) 2 [ 89,00k 08k (0)— 2K(0)— k(D) The Fourier coefficients of this function are
v=0 K’
+ Gyr (9 On(kr) 00k’ (0, 2k(0)+ k(D] Gop=——, Gpi1=0 V k. (31)
7—v—1 7—1 (2k)2
X [T dewisr 1T e (25 With Eq. (31) in Egs.(27) and(26), we have the first order
=1 1= approximation for the coefficients
Now, we have an approximation for the invariant density up . 1
to first order. We are interested in the behavior of the low- cD(k©) = L 1+ (32
dimensional projections of this invariant density and their k© 227
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FIG. 5. Upper panel¢®) as function ofe for r=2; open FlG. 7 ©) function ofr for &= 0.002- th
circles correspond to the first order approximation and the closed G. d- Ll,lppedr p_anlekiq; ) asha unction o or 8_9'00 ' t_ € f
circles to numerics. Lower panel: the difference between first ordePPeN and closed circles have the same meaning as in previous fig-

and numerics; the dashed line is a fit to a parabola, showing that thaes- Lower panel_: th(_a d|ffe_rence between the first order approxi-
error is of second order ia. mation and numerics is depicted.

and for the one-dimensional projection of the invariant meaﬁ¢(O)>'<COS(¢(O))_>’<_Si”(¢(O))>_' In order to give the average of
sure the angle a definite meaning we have restricted the values of
the angle to the intervdl0,27). In Figs. 5 and 6 some nu-
merical results are compared to the first order approximation
+0(e?) as a function of the coupling. All the numerical results
' clearly confirm that our approximation correctly describes
(33)  the lowest order effects, and that the neglected higher order
corrections lead to less than 10% effects ésr0.01. In or-
It is easy to see that this projection converges smoothly togjer to demonstrate_that our_result_s are to some extent uni-
wards an asymptotic form. We can check numerically theforrn n th? delay time we investigate _the error for f|n|t_e
range of validity of our approximation observing the behay-COUP!INg € in dependence on the delay time. The result dis-

ior of the averages with respect to the invariant measur(lé)Iaye<j in Fig. 7 shows that the d?ffe'rence stays finite even if
the delay becomes large. Such finding demonstrates that our

o0

E sin(k(@ ()

0= 1 k(©)

p(p)=1-2¢| 1+

1
227’

0 expansion can be used even for large delay times.
“’\i\!\ Also the specific expressions for the two-dimensional pro-
A 0002 ¢ 7 jections may be obtained,
&, -0.004 | TR 1 ‘ o
c med . p(¢(0)’¢(l)): 5(¢(0)_ 2 Jd’(]))
r=4 -0.006 - =— = m=2 B A
.a = . .
V. _o.008 : te D cW(K© k1))gkPeD+kDg)
-0.01 : . . . k() k()
0001 ° 0.002 0.004 0.006 0.008 0.01 (34)
& 00008 - with j,
=2
£ oo00s ¢ 1 i
@ OO kY= — 14+ —
o 00004 | 1 ¢ (kK kYY) 2k 2 1K0) ( 1 227)
S o0.0002 |
3 - 21iKk(©) ( 1 )
° ' ‘ ' t————| ) omT —
0 0.002 0.004 0.006 0.008 0.01 : " k(),2m
e (21K + k(D)2 227
FIG. 6. Similar to Fig. 5, with averages ¢$inm¢®)), which 2ik©
are related to the values of the coefficieafs). In the upper panel + 4(k(°)+ 2’jk(j))2
the closed symbols correspond to the first order approximation and
the open ones to numerics. In the lower panel the difference be- ji-2 1
tween the first order approximation and the numerics is depicted. X 2 2—V( S(i) i+ =/ (35)
The fit to a parabola shows that the error is of second order. v=0 T
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wherem andn are integers. We can see also that the two- 1
dimensional projections of the invariant density will have an « 08 |
asymptotic form for larger and that the convergence rate in 2 06 |
this limit will also be proportional to 4°. x
In order to check if the arguments of Sec. Il apply here, ><é 041
we should investigate the correlation function for sn&alA § 02|

superficial inspection of Eq(34) suggests that to leading
nonvanishing order correlations betwegf? and¢(” decay

as 2 ". That rate apparently differs from the convergence
rate of the one particle density which, according to &9),

is given by 4°". Thus one has to clarify how the decay of =
correlations is related to the convergence properties for largeZ*
delays. For that purpose let us have a look at perturbativel
result(27). If the delay term is Hioler continuous of ordelr
then its Fourier coefficients decay likg,~k~'~* and Eq.
(27) tells us that the one particle density converges according™"
to a power law 217 If g is analytic then Fourier coeffi-

cients decay even faster, namely exponentialy FIG. 8. A(x,,X,-;) (upper pangland the average difference

~exp(-ak) and the convergence of the one particle density,eqyeen measures at low and large delayer pane) for the map
is hyperexponential exp(a2™~ 7). Thus the mixing rate of the (9).

map together with the analytical properties of the delay term

determine the convergence rate of the projected measure. it a particular pair correlation which involves the analytical
fact the correct convergence rate is reflected by a suitableroperties of the delay term. . .
correlation function, namely the pair correlationgffe) it- Our treatment was confined to a first order expansion. But

self, which can be easily computed taking the Fourier serie¥/€ have good indications that our results are valid beyond
into account. such an order and we suppose that one might even be able to

Although we have restricted our analysis to first order inP€"form a formal proof of our statements along these lines.

e we expect that higher order contributions will have the'" addition, using, e.g., diagrammatic or projection tech-
niques it should be possible to go beyond our simple pertur-

same qualitative behavior. In order to make _this study r.nor(??ative treatment. But such advanced approaches go far be-
Iczgmpl?c,ate,dvvf_ h?r\]’e repro?cuced tRe .?umert;cal ana]!y5|s %/ond the scope of this present contribution. Analytic
igs. 3 and 4 in the case of m&@). As it can be seen from 7,5 ,aches 5o far are restricted to hyperbolic systems, i.e.,

the lower palmel c;]f F'.g' |8’ the rc])ne-dlmensmnal_prOJecnc;]nessentia"y to maps on the torus. Maps on intervals, e.g., even
converges also whea is large. The convergence is smoot the simple Bernoulli shift(3) lacks such a treatment until

and the discrepancy between the measure at low and larggq,y - Nevertheless, numerical simulations indicate that
Qelays depends oa similarly as the first order approxima- qualitatively such models behave similar.
tion suggests. We have focused here on the scalar dengity) of Eq.
(2) but other projections of the probability densities in spaces
with smaller dimensions than the attractor itself are also ob-
IV. DISCUSSION served to have an asymptotic form in the limit of large delay.

We have analyzed the limit of large delay in a particularone of these projections, the one on the manifold spanned by

time discrete system by an analytical perturbation expansior.Xn+1:Xn.¥n--}, is relevant when phase space reconstruc-

The validity of the expansion has been confirmed by numerition Methods are used to identify the dynamics from a time

cal simulations. Our result shows that projected measure%er.'es[lg’lq' From thls prOJectlon one can also perfqrm
converge in the limit of large delay, where the rate of con-Estimates of the mefric entropy without using the minimal
vergence is determined by the mixing rate of the chaotic maglmdenafon k:equwegl by the fTar'erS the_orerg. Thereffore,dthe
and by analytic properties of the delay term. Chaos plays, optudy of other projections of the invariant density of a de-
course, an important role for the convergence since othefdyed system is an intersting issue for future investigations.
wise correlations would not decay and smooth densities
would not exist in general. However, it is not the plain mix-
ing rate which is responsible for the rate of the convergence E.F.M. acknowledges financial support from DAAD.
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